Entry Title


If you’re a museum aficionado itching for a new place to explore, 2023 has you covered. New science museums and exhibitions are opening, and some zoos are expanding. This sampling of destinations to check out in the new year or beyond has something for everyone, whether you’re a wildlife lover, space nerd or history buff.


Grand Egyptian Museum
Outside Cairo
Opens: To be announced

2022 marked the 100th anniversary of the discovery of King Tut’s tomb (SN: 11/19/22, p. 14). Now, thousands of artifacts from the tomb — along with tens of thousands of other archaeological finds from ancient Egypt — will go on display when this museum, located within view of the Pyramids of Giza, opens. More than a decade in the making, it will be one of the largest archaeological museums in the world.


Richard Gilder Center for Science, Education and Innovation
American Museum of Natural History
New York City
Opens: February 17

This multistory building will add tons of new exhibit space to the more than 150-year-old museum. Visitors can explore an insectarium that includes one of the world’s largest displays of live leaf-cutting ants and come face-to-face with dozens of butterfly species in a vivarium. Meanwhile, the interconnectedness of life will be on display in the immersive, 360-degree “Invisible Worlds” exhibition.

Part of the "Invisible Worlds" exhibit, a giant room with a black and white grid pattern interspaced with turquoise circles and magenta horizontal lines.
Technicians project test patterns at “Invisible Worlds,” an immersive experience about the interconnectedness of life, at the Richard Gilder Center for Science, Education and Innovation at the American Museum of Natural History.Timothy Schenck/© AMNH

Galápagos Islands
Houston Zoo
Opens: September 2023

If you can’t travel to the Galápagos Islands, a trip to Texas might be the next best thing. Giant tortoises, iguanas, penguins, sea lions, sharks and other creatures will inhabit this new exhibition that will re-create the land and marine ecosystems of the archipelago made famous by Charles Darwin.

An artist rendering of several giant tortoises in a field and small body of water while zoo guests look on.
At the Houston Zoo’s upcoming Galápagos Islands exhibit, visitors will come face-to-face with giant tortoises (shown in an artistic rendering).Houston Zoo

Kansas City Zoo Aquarium
Opens: September 2023

The 34 exhibits of this new aquarium will allow visitors to glimpse a wide variety of ocean locales without having to leave the Midwest. Underwater residents will include sea urchins and sea anemones in a warm intertidal zone, fish swimming in a coral reef, comb jellies floating in the open ocean and sea otters playing along a rocky shore.

An artist rendering of the exterior of the new Kansas City Zoo's aquarium with people walking around outside.
Inside the Kansas City Zoo’s new aquarium (shown in this artistic rendering), people can meet the denizens of different marine ecosystems.Kansas City Zoo

SPACE
Franklin Institute
Philadelphia
Opens: Fall 2023

To design this new two-story gallery dedicated to the future of space exploration, exhibit planners met with local students and teachers to find out what they wanted to learn. The result is an experience that, among other things, will showcase the current and future technologies needed to live and work in space as well as the many career paths into the aerospace industry.

An artistic rendering of a futuristic space ship with guests interacting with space items.
The Franklin Institute in Philadelphia will open a new exhibition about space travel and exploration in September (shown in an artistic rendering).Franklin Institute

Bird House
Smithsonian’s National Zoo
Washington, D.C.
Opens: To be announced

With a focus on bird migration and conservation in the Americas, the zoo’s new bird house will feature three aviaries: The first will show how the Delaware Bay is a key refueling spot for migratory shorebirds, the second will demonstrate how seasonal wetlands in the Midwest serve waterfowl and the third will illustrate how a tropical coffee farm can provide respite for songbirds in winter.

An artists rendering of the new bird house at the Smithsonian's Nation Zoo with trees and bushes, and birds flying around.
The new bird house at the Smithsonian’s National Zoo will feature three aviaries, including one that re-creates the habitat of a tropical coffee farm (shown in an artistic rendering).Smithsonian’s National Zoo

Robot & AI Museum
Seoul, South Korea
Opens: To be announced

Though details are still scant, this museum dedicated to furthering public knowledge of robotics, artificial intelligence and machine learning is expected to open later this year.

from Science News https://ift.tt/gw17TdP
via



Source link

Entry Title


A mysterious new disease may be to blame for severe, unexplained inflammation in older men. Now, researchers have their first good look at who the disease strikes, and how often.

VEXAS syndrome, an illness discovered just two years ago, affects nearly 1 in 4,000 men over 50 years old, scientists estimate January 24 in JAMA. The disease also occurs in older women, though less frequently. Altogether, more than 15,000 people in the United States may be suffering from the syndrome, says study coauthor David Beck, a clinical geneticist at NYU Langone Health in New York City. Those numbers indicate that physicians should be on the lookout for VEXAS, Beck says. “It’s underrecognized and underdiagnosed. A lot of physicians aren’t yet aware of it.”

Beck’s team reported discovering VEXAS syndrome in 2020, linking mutations in a gene called UBA1 to a suite of symptoms including fever, low blood cell count and inflammation. His team’s new study is the first to estimate how often VEXAS occurs in the general population — and the results are surprising. “It’s more prevalent than we suspected,” says Emma Groarke, a hematologist at the National Institutes of Health in Bethesda, Md., who was not involved with the study.

VEXAS tends to show up later in life ­­— after people somehow acquire UBA1 mutations in their blood cells. Patients may feel overwhelming fatigue, lethargy and have skin rashes, Beck says. “The disease is progressive, and it’s severe.” VEXAS can also be deadly. Once a person’s symptoms begin, the median survival time is about 10 years, his team has found.

Until late 2020, no one knew that there was a genetic thread connecting VEXAS syndrome’s otherwise unexplained symptoms. In fact, individuals may be diagnosed with other conditions, including polyarteritis nodosa, an inflammatory blood disease, and relapsing polychondritis, a connective tissue disorder, before being diagnosed with VEXAS.

To ballpark the number of VEXAS-affected individuals, Beck’s team combed through electronic health records of more than 160,000 people in Pennsylvania, in a collaboration with the NIH and Geisinger Health. In people over 50, the disease-causing UBA1 mutations showed up in roughly 1 in 4,000 men. Among women in that age bracket, about 1 in 26,000 had the mutations.  

A genetic test of the blood can help doctors diagnose VEXAS, and treatments like steroids and other immunosuppressive drugs, which tamp down inflammation, can ease symptoms. Groarke and her NIH colleagues have also started a small phase II clinical trial testing bone marrow transplants as a way to swap patients’ diseased blood cells for healthy ones.

Beck says he hopes to raise awareness about the disease, though he recognizes that there’s much more work to do. In his team’s study, for instance, the vast majority of participants were white Pennsylvanians, so scientists don’t know how the disease affects other populations. Researchers also don’t know what spurs the blood cell mutations, nor how they spark an inflammatory frenzy in the body.

“The more patients that are diagnosed, the more we’ll learn about the disease,” Beck says. “This is just one step in the process of finding more effective therapies.”

from Science News https://ift.tt/ODWd3p6
via



Source link

Entry Title


For nearly 650 years, the fortress walls in the Chinese city of Xi’an have served as a formidable barrier around the central city. At 12 meters high and up to 18 meters thick, they are impervious to almost everything — except subatomic particles called muons.

Now, thanks to their penetrating abilities, muons may be key to ensuring that the walls that once protected the treasures of the first Ming Dynasty — and are now a national architectural treasure in their own right — stand for centuries more.

A refined detection method has provided the highest-resolution muon scans yet produced of any archaeological structure, researchers report in the Jan. 7 Journal of Applied Physics. The scans revealed interior density fluctuations as small as a meter across inside one section of the Xi’an ramparts. The fluctuations could be signs of dangerous flaws or “hidden structures archaeologically interesting for discovery and investigation,” says nuclear physicist Zhiyi Liu of Lanzhou University in China.

An image showing the density of a section of the Xi'an fortress walls.
In this image, muons have revealed density anomalies in a section of the Xi’an fortress walls. All colors in this plot indicate places where densities are lower than average for the structure, with the bluer portions showing where density is lowest.Xi’an City Wall Management Committee, G. Liu et al/Journal of Applied Physics 2023

Muons are like electrons, only heavier. They rain down all over the planet, produced when charged particles called cosmic rays hit the atmosphere. Although muons can travel deep into earth and stone, they are scattered or absorbed depending on the material they encounter. Counting the ones that pass through makes them useful for studying volcano interiors, scanning pyramids for hidden chambers and even searching for contraband stashed in containers impervious to X-rays (SN: 4/22/22).

Though muons stream down continuously, their numbers are small enough that the researchers had to deploy six detectors for a week at a time to collect enough data for 3-D scans of the rampart.

It’s now up to conservationists to determine how to address any density fluctuations that might indicate dangerous flaws, or historical surprises, inside the Xi’an walls.

from Science News https://ift.tt/02T5xin
via



Source link

Entry Title


In shallow coastal waters of the Indian and Pacific oceans, a seagrass-scrounging cousin of the manatee is in trouble. Environmental strains like pollution and habitat loss pose a major threat to dugong (Dugong dugon) survival, so much so that in December, the International Union for Conservation of Nature upgraded the species’ extinction risk status to vulnerable. Some populations are now classified as endangered or critically endangered.

If that weren’t bad enough, the sea cows are at risk of losing the protection of a group who has long looked after them: the Torres Strait Islanders. These Indigenous people off the coast of Australia historically have been stewards of the dugong populations there, sustainably hunting the animals and monitoring their numbers. But the Torres Strait Islanders are also threatened, in part because sea levels are rising and encroaching on their communities, and warmer air and sea temperatures are making it difficult for people to live in the region.

This situation isn’t unique to dugongs. A global analysis of 385 culturally important plant and animal species found that 68 percent were both biologically vulnerable and at risk of losing their cultural protections, researchers report January 3 in the Proceedings of the National Academy of Sciences.

The findings clearly illustrate that biology shouldn’t be the primary factor in shaping conservation policy, says cultural anthropologist Victoria Reyes-García. When a culture dwindles, the species that are important to that culture are also under threat. To be effective, more conservation efforts need to consider the vulnerability of both the species and the people that have historically cared for them, she says.

A lot of the people in the conservation arena think we need to separate people from nature,” says Reyes-García, of the Catalan Institution for Research and Advanced Studies and the Autonomous University of Barcelona. But that tactic overlooks the caring relationship many cultural groups – like the Torres Strait Islanders – have with nature, she says.

“Indigenous people, local communities, also other ethnic groups – they are good stewards of their biodiversity,” says Ina Vandebroek, an ethnobotanist at the University of the West Indies at Mona in Kingston, Jamaica, who was not involved in the work. “They have knowledge, deep knowledge, about their environments that we really cannot overlook.”

One way to help shift conservation efforts is to give species a “biocultural status,” which would provide a fuller picture of their vulnerability, Reyes-García and colleagues say. In the study, the team used existing language vitality research to determine a culture’s risk of disappearing: The more a cultural group’s language use declines, the more that culture is threatened. And the more a culture is threatened, the more culturally vulnerable its important species are. Researchers then combined a species’ cultural and biological vulnerability to arrive at its biocultural status. In the dugong’s case, its biocultural status is endangered, meaning it is more at risk than its IUCN categorization suggests.

This intersectional approach to conservation can help species by involving the people that have historically cared for them (SN: 3/2/22). It can also highlight when communities need support to continue their stewardship, Reyes-García says. She hopes this new framework will spark more conservation efforts that recognize local communities’ rights and encourage their participation – leaning into humans’ connection with nature instead of creating more separation (SN: 3/8/22).      

from Science News https://ift.tt/nDje0Vx
via



Source link

Entry Title


Prairie voles have long been heralded as models of monogamy. Now, a study suggests that the “love hormone” once thought essential for their bonding — oxytocin — might not be so necessary after all.

Interest in the romantic lives of prairie voles (Microtus ochrogaster) was first sparked more than 40 years ago, says Devanand Manoli, a biologist at the University of California, San Francisco. Biologists trying to capture voles to study would frequently catch two at a time, because “what they were finding were these male-female pairs,” he says. Unlike many other rodents with their myriad partners, prairie voles, it turned out, mate for life (SN: 10/5/15).

Pair-bonded prairie voles prefer each other’s company over a stranger’s and like to huddle together both in the wild and the lab. Because other vole species don’t have social behaviors as complex as prairie voles do, they have been a popular animal system for studying how social behavior evolves.

Research over the last few decades has implicated a few hormones in the brain as vital for proper vole manners, most notably oxytocin, which is also important for social behavior in humans and other animals.

Manoli and colleagues thought the oxytocin receptor, the protein that detects and reacts to oxytocin, would be the perfect test target for a new genetic engineering method based on CRISPR technology, which uses molecules from bacteria to selectively turn off genes. The researchers used the technique on vole embryos to create animals born without functioning oxytocin receptors. The team figured that the rodents wouldn’t be able to form pair-bonds — just like voles in past experiments whose oxytocin activity was blocked with drugs.

Instead, Manoli says, the researchers got “a big surprise.” The voles could form pair-bonds even without oxytocin, the team reports in the March 15 Neuron.

“I was very surprised by their results,” says Larry Young, a biologist at Emory University in Atlanta, who was not involved with the study but has studied oxytocin in prairie voles for decades.

A key difference between the new study and past studies that used drugs to block oxytocin is the timing of exactly when the hormone’s activity is turned off. With drugs, the voles are adults and have had exposure to oxytocin in their brains before the shutoff. With CRISPR, “these animals are born never experiencing oxytocin signaling in the brain,” says Young, whose research group has recently replicated Manoli’s experiment and found the same result.

It may be, Young says, that pair-bonding is controlled by a brain circuit that typically becomes dependent on oxytocin through exposure to it during development, like a symphony trained by a conductor. Suddenly remove that conductor and the symphony will sound discordant, whereas a jazz band that’s never practiced with a conductor fares just fine without one.

Manoli agrees that the technique’s timing matters. A secondary reason for the disparity, he says, could be that drugs often have off-target effects, such that the chemicals meant to block oxytocin could have been doing other things in the voles’ brains to affect pair-bonding. But Young disagrees. “I don’t believe that,” he says. “The [drug] that people use is very selective,” not even binding to the receptor of oxytocin’s closest molecular relative, vasopressin. 

Does this result mean that decades of past work on pair-bonding has been upended? Not quite.

“It shows us that this is a much more complicated question,” Manoli says. “The pharmacologic manipulations … suggested that [oxytocin] plays a critical role. The question is, what is that role?”

The new seemingly startling result makes sense if you look at the big picture, Manoli says. The ability for voles to pair-bond is “so critical for the survival of the species,” he says. “From a genetics perspective, it may make sense that there isn’t a single point of failure.”

The group now hopes to look at how other hormones, like vasopressin, influence pair-bonding using this relatively new genetic technique. They are also looking more closely at the voles’ behavior to be sure that the CRISPR gene editing didn’t alter it in a way they haven’t noticed yet.

In the game of vole “love,” it looks like we’re still trying to understand all the players.

from Science News https://ift.tt/91eyGxk
via



Source link

Entry Title


covers of the November 19, 2022 & December 3, 2022 issues

In full swing

The swaying feeling in jazz music that compels feet to tap may arise from near-imperceptible delays in musicians’ timing, Nikk Ogasa reported in “Jazz gets its swing from small, subtle delays” (SN: 11/19/22, p. 5).

Reader Oda Lisa, a self-described intermediate saxophonist, has noticed these subtle delays while playing.“I recorded my ‘jazzy’ version of a beloved Christmas carol, which I sent to a friend of mine,” Lisa wrote. “She praised my effort overall, but she suggested that I get a metronome because the timing wasn’t consistent. My response was that I’m a slave to the rhythm that I hear in my head. I think now I know why.”

On the same page

Murky definitions and measurements impede social science research, Sujata Gupta reported in “Fuzzy definitions mar social science” (SN: 11/19/22, p. 10).

Reader Linda Ferrazzara found the story thought-provoking. “If there’s no consensus on the terms people use … then there can be no productive discussion or conversation. People end up talking and working at cross-purposes with no mutual understanding or progress,” Ferrazzara wrote.

Fly me to the moon

Space agencies are preparing to send the next generation of astronauts to the moon and beyond. Those crews will be more diverse in background and expertise than the crews of the Apollo missions, Lisa Grossman reported in “Who gets to go to space?” (SN: 12/3/22, p. 20).

“It is great to see a broader recognition of the work being done to make spaceflight open to more people,” reader John Allen wrote. “Future space travel will and must accommodate a population that represents humanity. It won’t be easy, but it will be done.”

The story also reminded Allen of the Gallaudet Eleven, a group of deaf adults who participated in research done by NASA and the U.S. Navy in the 1950s and ’60s. Experiments tested how the volunteers responded (or didn’t) to a range of scenarios that would typically induce motion sickness, such as a ferry ride on choppy seas. Studying how the body’s sensory systems work without the usual gravitational cues from the inner ear allowed scientists to better understand motion sickness and the human body’s adaptation to spaceflight.

Sweet dreams are made of this

A memory-enhancing method that uses sound cues may boost an established treatment for debilitating nightmares, Jackie Rocheleau reported in “L­earning trick puts nightmares to bed” (SN: 12/3/22, p. 11).

Reader Helen Leaver shared her trick to a good night’s sleep: “I learned that I was having strong unpleasant adventures while sleeping, and I would awaken hot and sweaty. By eliminating the amount of heat from bedding and an electrically heated mattress pad, I now sleep well without those nightmares.”

Pest perspectives

In “Why do we hate pests?” (SN: 12/3/22, p. 26), Deborah Balthazar interviewed former Science News Explores staff writer Bethany Brookshire about her new book, Pests. The book argues that humans — influenced by culture, class, colonization and much more — create animal villains.

The article prompted reader Doug Clapp to reflect on what he considers pests or weeds. “A weed is a plant in the wrong place, and a pest is an animal in the wrong place,” Clapp wrote. But what’s considered “wrong” depends on the humans who have power over the place, he noted. “Grass in a lawn can be a fine thing. Grass in a garden choking the vegetables I’m trying to grow becomes a weed. Mice in the wild don’t bother me. Field mice migrating into my house when the weather cools become a pest, especially when they eat into my food and leave feces behind,” Clapp wrote.

The article encouraged Clapp to look at pests through a societal lens: “I had never thought of pests in terms of high-class or low-class. Likewise, the residual implications of [colonization]. Thanks for provoking me to consider some of these issues in a broader context.”

from Science News https://ift.tt/OmbEF6U
via



Source link

Entry Title


More than a century ago, scientists proved that carbon dioxide in Earth’s atmosphere could act like a thermostat — adding more CO2 would turn up the heat, removing it would chill the planet. But back then, most scientists thought that Earth’s climate system was far too large and stable to change quickly, that any fluctuations would happen over such a long timescale that it wouldn’t matter much to everyday life (SN: 3/12/22, p. 16).

Now all it takes is a look at the Weather Channel to know how wrong scientists were. Things are changing fast. Last year alone, Europe, South Asia, China, Japan and the American West endured deadly, record-breaking heat waves (SN: 12/17/22 & 12/31/22, p. 38). As I write this, torrential rains are bringing death and destruction to California. And with levels of climate-warming gases continuing to increase in the atmosphere, extreme weather events will become even more frequent.

Given the vastness of this threat, it’s tempting to think that any efforts that we make against it will be futile. But that’s not true. Around the world, scientists and engineers; entrepreneurs and large corporations; state, national and local governments; and international coalitions are acting to put the brakes on climate change. Last year, the United States signed into law a $369 billion investment in renewable energy technologies and other responses (SN: 12/17/22 & 12/31/22, p. 28). And the World Bank invested $31.7 billion to assist other countries.

In this issue, contributing correspondent Alexandra Witze details the paths forward: which responses will help the most, and which remain challenging. Shifting to renewable energy sources like wind and solar should be the easiest. We already have the technology, and costs have plunged over the last decade. Other approaches that are feasible but not as far along include making industrial processes more energy efficient, trapping greenhouse gases and developing clean fuels. Ultimately, the goal is to reinvent the global energy infrastructure. Societies have been retooling energy infrastructures for centuries, from water and steam power to petroleum and natural gas to nuclear power and now renewables. This next transformation will be the biggest yet. But we have the scientific understanding and technological savvy to make it happen.

This cover story kicks off a new series for Science News, The Climate Fix. In future issues, we will focus on covering solutions to the climate crisis, including the science behind innovations, the people making them happen, and the social and environmental impacts. You’ll also see expanded climate coverage for our younger readers, ages 9 and up, at Science News Explores online and in print.

With this issue, we also welcome our new publisher, Michael Gordon Voss. He comes to us with deep knowledge of the media industry, experience in both for-profit and nonprofit publishing and a love of science. Before joining Science News Media Group, Voss was publisher of Stanford Social Innovation Review, and vice president and associate publisher at Scientific American. With his arrival, publisher Maya Ajmera takes on her new role as executive publisher. Under her leadership, we have seen unprecedented growth. We’re fortunate to have these two visionaries directing our business strategy amid a rapidly changing media environment.

from Science News https://ift.tt/yRV4dAu
via



Source link

Entry Title


Patricia Hidalgo-Gonzalez saw the future of energy on a broiling-hot day last September.

An email alert hit her inbox from the San Diego Gas & Electric Company. “Extreme heat straining the grid,” read the message, which was also pinged as a text to 27 million people. “Save energy to help avoid power interruptions.”

It worked. People cut their energy use. Demand plunged, blackouts were avoided and California successfully weathered a crisis exacerbated by climate change. “It was very exciting to see,” says Hidalgo-Gonzalez, an electrical engineer at the University of California, San Diego who studies renewable energy and the power grid.

This kind of collective societal response, in which we reshape how we interact with the systems that provide us energy, will be crucial as we figure out how to live on a changing planet.

Earth has warmed at least 1.1 degrees Celsius since the 19th century, when the burning of coal, oil and other fossil fuels began belching heat-trapping gases such as carbon dioxide into the atmosphere. Scientists agree that only drastic action to cut emissions can keep the planet from blasting past 1.5 degrees of warming — a threshold beyond which the consequences become even more catastrophic than the rising sea levels, extreme weather and other impacts the world is already experiencing.

The goal is to achieve what’s known as net-zero emissions, where any greenhouse gases still entering the atmosphere are balanced by those being removed — and to do it as soon as we can.

Scientists say it is possible to swiftly transform the ways we produce and consume energy. To show the way forward, researchers have set out paths toward a world where human activities generate little to no carbon dioxide and other greenhouse gases — a decarbonized economy.

The key to a decarbonized future lies in producing vast amounts of new electricity from sources that emit little to none of the gases, such as wind, solar and hydropower, and then transforming as much of our lives and our industries as possible to run off those sources. Clean electricity needs to power not only the planet’s current energy use but also the increased demands of a growing global population.

Once humankind has switched nearly entirely to clean electricity, we will also have to counter­balance the carbon dioxide we still emit — yes, we will still emit some — by pulling an equivalent amount of carbon dioxide out of the atmosphere and storing it somewhere permanently.

Achieving net-zero emissions won’t be easy. Getting to effective and meaningful action on climate change requires overcoming decades of inertia and denial about the scope and magnitude of the problem. Nations are falling well short of existing pledges to reduce emissions, and global warming remains on track to charge past 1.5 degrees perhaps even by the end of this decade.

Yet there is hope. The rate of growth in CO2 emissions is slowing globally — down from 3 percent annual growth in the 2000s to half a percent annual growth in the last decade, according to the Global Carbon Project, which quantifies greenhouse gas emissions.

There are signs annual emissions could start shrinking. And over the last two years, the United States, by far the biggest cumulative contributor to global warming, has passed several pieces of federal legislation that include financial incentives to accelerate the transition to clean energy. “We’ve never seen anything at this scale,” says Erin Mayfield, an energy researcher at Dartmouth College.

Though the energy transition will require many new technologies, such as innovative ways to permanently remove carbon from the atmosphere, many of the solutions, such as wind and solar power, are in hand — “stuff we already have,” Mayfield says.

The current state of carbon dioxide emissions

Of all the emissions that need to be slashed, the most important is carbon dioxide, which comes from many sources such as cars and trucks and coal-burning power plants. The gas accounted for 79 percent of U.S. greenhouse gas emissions in 2020. The next most significant greenhouse gas, at 11 percent of emissions in the United States, is methane, which comes from oil and gas operations as well as livestock, landfills and other land uses.

The amount of methane may seem small, but it is mighty — over the short term, methane is more than 80 times as efficient at trapping heat as carbon dioxide is, and methane’s atmospheric levels have nearly tripled in the last two centuries. Other greenhouse gases include nitrous oxides, which come from sources such as applying fertilizer to crops or burning fuels and account for 7 percent of U.S. emissions, and human-made fluorinated gases such as hydrofluorocarbons that account for 3 percent.

Globally, emissions are dominated by large nations that produce lots of energy. The United States alone emits around 5 billion metric tons of carbon dioxide each year. It is responsible for most of the greenhouse gas emissions throughout history and ceded the spot for top annual emitter to China only in the mid-2000s. India ranks third.

Because of the United States’ role in producing most of the carbon pollution to date, many researchers and advocates argue that it has the moral responsibility to take the global lead on cutting emissions. And the United States has the most ambitious goals of the major emitters, at least on paper. President Joe Biden has said the country is aiming to reach net-zero emissions by 2050. Leaders in China and India have set net-zero goals of 2060 and 2070, respectively.

Under the auspices of a 2015 international climate change treaty known as the Paris agreement, 193 nations plus the European Union have pledged to reduce their emissions. The agreement aims to keep global warming well below 2 degrees, and ideally to 1.5 degrees, above preindustrial levels. But it is insufficient. Even if all countries cut their emissions as much as they have promised under the Paris agreement, the world would likely blow past 2 degrees of warming before the end of this century. 

Every nation continues to find its own path forward. “At the end of the day, all the solutions are going to be country-specific,” says Sha Yu, an earth scientist at the Pacific Northwest National Laboratory and University of Maryland’s Joint Global Change Research Institute in College Park, Md. “There’s not a universal fix.”

But there are some common themes for how to accomplish this energy transition — ways to focus our efforts on the things that will matter most. These are efforts that go beyond individual consumer choices such as whether to fly less or eat less meat. They instead penetrate every aspect of how society produces and consumes energy.

Such massive changes will need to overcome a lot of resistance, including from companies that make money off old forms of energy as well as politicians and lobbyists. But if society can make these changes, it will rank as one of humanity’s greatest accomplishments. We will have tackled a problem of our own making and conquered it.

Here’s a look at what we’ll need to do.

Make as much clean electricity as possible

To meet the need for energy without putting carbon dioxide into the atmosphere, countries would need to dramatically scale up the amount of clean energy they produce. Fortunately, most of that energy would be generated by technologies we already have — renewable sources of energy including wind and solar power.

“Renewables, far and wide, are the key pillar in any net-zero scenario,” says Mayfield, who worked on an influential 2021 report from Princeton University’s Net-Zero America project, which focused on the U.S. economy.

The Princeton report envisions wind and solar power production roughly quadrupling by 2030 to get the United States to net-zero emissions by 2050. That would mean building many new solar and wind farms, so many that in the most ambitious scenario, wind turbines would cover an area the size of Arkansas, Iowa, Kansas, Missouri, Nebraska and Oklahoma combined.

Such a scale-up is only possible because prices to produce renewable energy have plunged. The cost of wind power has dropped nearly 70 percent, and solar power nearly 90 percent, over the last decade in the United States. “That was a game changer that I don’t know if some people were expecting,” Hidalgo-Gonzalez says.

Globally the price drop in renewables has allowed growth to surge; China, for instance, installed a record 55 gigawatts of solar power capacity in 2021, for a total of 306 gigawatts or nearly 13 percent of the nation’s installed capacity to generate electricity. China is almost certain to have had another record year for solar power installations in 2022.

Challenges include figuring out ways to store and transmit all that extra electricity, and finding locations to build wind and solar power installations that are acceptable to local communities. Other types of low-carbon power, such as hydropower and nuclear power, which comes with its own public resistance, will also likely play a role going forward.

Get efficient and go electric

The drive toward net-zero emissions also requires boosting energy efficiency across industries and electrifying as many aspects of modern life as possible, such as transportation and home heating.

Some industries are already shifting to more efficient methods of production, such as steelmaking in China that incorporates hydrogen-based furnaces that are much cleaner than coal-fired ones, Yu says. In India, simply closing down the most inefficient coal-burning power plants provides the most bang for the buck, says Shayak Sengupta, an energy and policy expert at the Observer Research Foundation America think tank in Washington, D.C. “The list has been made up,” he says, of the plants that should close first, “and that’s been happening.”

To achieve net-zero, the United States would need to increase its share of electric heat pumps, which heat houses much more cleanly than gas- or oil-fired appliances, from around 10 percent in 2020 to as much as 80 percent by 2050, according to the Princeton report. Federal subsidies for these sorts of appliances are rolling out in 2023 as part of the new Inflation Reduction Act, legislation that contains a number of climate-related provisions.

Shifting cars and other vehicles away from burning gasoline to running off of electricity would also lead to significant emissions cuts. In a major 2021 report, the National Academies of Sciences, Engineering and Medicine said that one of the most important moves in decarbonizing the U.S. economy would be having electric vehicles account for half of all new vehicle sales by 2030. That’s not impossible; electric car sales accounted for nearly 6 percent of new sales in the United States in 2022, which is still a low number but nearly double the previous year.

Make clean fuels

Some industries such as manufacturing and transportation can’t be fully electrified using current technologies — battery powered airplanes, for instance, will probably never be feasible for long-duration flights. Technologies that still require liquid fuels will need to switch from gas, oil and other fossil fuels to low-carbon or zero-carbon fuels.

One major player will be fuels extracted from plants and other biomass, which take up carbon dioxide as they grow and emit it when they die, making them essentially carbon neutral over their lifetime. To create biofuels, farmers grow crops, and others process the harvest in conversion facilities into fuels such as hydrogen. Hydrogen, in turn, can be substituted for more carbon-intensive substances in various industrial processes such as making plastics and fertilizers — and maybe even as fuel for airplanes someday.

In one of the Princeton team’s scenarios, the U.S. Midwest and Southeast would become peppered with biomass conversion plants by 2050, so that fuels can be processed close to where crops are grown. Many of the biomass feedstocks could potentially grow alongside food crops or replace other, nonfood crops.

Cut methane and other non-CO2 emissions

Greenhouse gas emissions other than carbon dioxide will also need to be slashed. In the United States, the majority of methane emissions come from livestock, landfills and other agricultural sources, as well as scattered sources such as forest fires and wetlands. But about one-third of U.S. methane emissions come from oil, gas and coal operations. These may be some of the first places that regulators can target for cleanup, especially “super emitters” that can be pinpointed using satellites and other types of remote sensing.

In 2021, the United States and the European Union unveiled what became a global methane pledge endorsed by 150 countries to reduce emissions. There is, however, no enforcement of it yet. And China, the world’s largest methane emitter, has not signed on.

Nitrous oxides could be reduced by improving soil management techniques, and fluorinated gases by finding alternatives and improving production and recycling efforts.

Sop up as much CO2 as possible

Once emissions have been cut as much as possible, reaching net-zero will mean removing and storing an equivalent amount of carbon to what society still emits.

One solution already in use is to capture carbon dioxide produced at power plants and other industrial facilities and store it permanently somewhere, such as deep underground. Globally there are around 35 such operations, which collectively draw down around 45 million tons of carbon dioxide annually. About 200 new plants are on the drawing board to be operating by the end of this decade, according to the International Energy Agency.

The Princeton report envisions carbon capture being added to almost every kind of U.S. industrial plant, from cement production to biomass conversion. Much of the carbon dioxide would be liquefied and piped along more than 100,000 kilometers of new pipelines to deep geologic storage, primarily along the Texas Gulf Coast, where underground reservoirs can be used to trap it permanently. This would be a massive infrastructure effort. Building this pipeline network could cost up to $230 billion, including $13 billion for early buy-in from local communities and permitting alone.

Another way to sop up carbon is to get forests and soils to take up more. That could be accomplished by converting crops that are relatively carbon-intensive, such as corn to be used in ethanol, to energy-rich grasses that can be used for more efficient biofuels, or by turning some cropland or pastures back into forest. It’s even possible to sprinkle crushed rock onto croplands, which accelerates natural weathering processes that suck carbon dioxide out of the atmosphere.

Another way to increase the amount of carbon stored in the land is to reduce the amount of the Amazon rainforest that is cut down each year. “For a few countries like Brazil, preventing deforestation will be the first thing you can do,” Yu says.

When it comes to climate change, there’s no time to waste

The Princeton team estimates that the United States would need to invest at least an additional $2.5 trillion over the next 10 years for the country to have a shot at achieving net-zero emissions by 2050. Congress has begun ramping up funding with two large pieces of federal legislation it passed in 2021 and 2022. Those steer more than $1 trillion toward modernizing major parts of the nation’s economy over a decade — including investing in the energy transition to help fight climate change.

Between now and 2030, solar and wind power, plus increasing energy efficiency, can deliver about half of the emissions reductions needed for this decade, the International Energy Agency estimates. After that, the primary drivers would need to be increasing electrification, carbon capture and storage, and clean fuels such as hydrogen.

The Ivanpah Solar Electric Generating System in the Mojave Desert.
A lot of the technology needed for a future with fewer carbon dioxide emissions is already available. The Ivanpah Solar Electric Generating System in the Mojave Desert focuses sunlight to generate steam. That steam spins turbines to make electricity.ADAMKAZ/E+/GETTY IMAGES

The trick is to do all of this without making people’s lives worse. Developing nations need to be able to supply energy for their economies to develop. Communities whose jobs relied on fossil fuels need to have new economic opportunities.

Julia Haggerty, a geographer at Montana State University in Bozeman who studies communities that are dependent on natural resources, says that those who have money and other resources to support the transition will weather the change better than those who are under-resourced now. “At the landscape of states and regions, it just remains incredibly uneven,” she says.

The ongoing energy transition also faces unanticipated shocks such as Russia’s invasion of Ukraine, which sent energy prices soaring in Europe, and the COVID-19 pandemic, which initially slashed global emissions but later saw them rebound.

But the technologies exist for us to wean our lives off fossil fuels. And we have the inventiveness to develop more as needed. Transforming how we produce and use energy, as rapidly as possible, is a tremendous challenge — but one that we can meet head-on. For Mayfield, getting to net-zero by 2050 is a realistic goal for the United States. “I think it’s possible,” she says. “But it doesn’t mean there’s not a lot more work to be done.”

from Science News https://ift.tt/Ii9rpNx
via



Source link

Entry Title


Birds that dive underwater — such as penguins, loons and grebes — may be more likely to go extinct than their nondiving kin, a new study finds.

Many water birds have evolved highly specialized bodies and behaviors that facilitate diving. Now, an analysis of the evolutionary history of more than 700 water bird species shows that once a bird group gains the ability to dive, the change is irreversible. That inflexibility could help explain why diving birds have an elevated extinction rate compared with nondiving birds, researchers report in the Dec. 21 Proceedings of the Royal Society B.

“There are substantial morphological adaptations for diving,” says Catherine Sheard, an evolutionary biologist at the University of Bristol in England, who was not involved with the study. For instance, birds that plunge into the water from the air, such as gannets and some pelicans, may have tweaks to the neck muscles and the bones in the chest. 

It’s possible that some diving birds are evolving under an evolutionary “ratchet,” where adaptations to exploit a certain food source or habitat unlock some new opportunities, but also encourage ever more specialized evolutionary tailoring. These birds may become trapped in their ways, increasing their risk of extinction. That’s especially true if their habitat rapidly changes in some negative way, possibly because of human-caused climate change (SN: 1/16/20).

Evolutionary biologists Josh Tyler and Jane Younger investigated the evolution of diving in Aequorlitornithes, a collection of 727 water bird species across 11 bird groups. The team divided species into either nondiving birds, or one of three diving types: foot-propelled pursuit (such as loons and grebes), wing-propelled pursuit (like penguins and auks) and the plunge divers.

Diving has evolved at least 14 separate times in the water birds, but there were no instances where diving birds reverted to a nondiving form, the researchers found.

The scientists also explored the link between diving and the development of new species, or their demise, in various bird lineages. Among 236 diving bird species, 75, or 32 percent, were part of lineages that are experiencing 0.02 more species extinctions per million years than the generation of new species. This elevated extinction rate was more common in the wing-propelled and foot-propelled pursuit divers compared with plunge divers. Bird lineages that don’t dive, on the other hand, generated 0.1 more new species per million years than the rate of species dying out.

“The more specialized you become, the more reliant you are on a particular diet, foraging strategy or environment,” says Tyler, of the University of Bath in England. “The range of environments available for foraging is much larger for the nondiving birds than for the specialist divers, and this may play into their ability to adapt and thrive.”

Within diving bird groups, the less specialized, the better. Take penguins, a group that has become the subject of a fair share of conservation concern (SN: 8/1/18). The researchers point out that gentoo penguins (Pygoscelis papua) — which have a broad diet — have larger population sizes than related chinstrap penguins (P. antarcticus) that eat mostly krill, and may actually be as many as four very recently diverged species. 

The International Union for the Conservation of Nature considers both penguin species to be of “least concern” in terms of imminent extinction risk. But chinstrap numbers are declining in some areas, while gentoo population numbers remain generally stable.

If some diving birds are being trapped in their environments by their own adaptations, that doesn’t bode well for their long-term survival, say Tyler and Younger, who is at the University of Tasmania in Hobart.

According to the IUCN, 156 species, or about one-fifth, of the 727 species of water birds are considered vulnerable, endangered or critically endangered. The researchers calculate that of the 75 diving bird species from lineages with heightened extinction rates, 24 species, or nearly one-third, are already listed as threatened.

from Science News https://www.sciencenews.org/article/birds-dive-underwater-greater-risk-extinction-evolution
via



Source link

Entry Title


The Arctic today is a hostile place for most primates. But a series of fossils found since the 1970s suggest that wasn’t always the case.

Dozens of fossilized teeth and jaw bones unearthed in northern Canada belonged to two species of early primates — or at least close relatives of primates — that lived in the Arctic around 52 million years ago, researchers report January 25 in PLOS ONE. These remains are the first primate-like fossils ever discovered in the Arctic and tell of a groundhog-sized animal that may have skittered across trees in a swamp that once existed above the Arctic Circle.  

The Arctic was significantly warmer during that time. But creatures still had to adapt to extreme conditions such as long winter months without sunlight. These challenges make the presence of primate-like creatures in the Arctic “incredibly surprising,” says coauthor Chris Beard, a paleontologist at the University of Kansas in Lawrence. “No other primate or primate relative has ever been found this far north so far.”

Between frigid temperatures, limited plant growth and months of perpetual darkness, living in the modern Arctic isn’t easy. This is especially true for primates, which evolved from small, tree-dwelling creatures that largely fed on fruit (SN: 6/5/13). To this day, most primates — humans and few other outliers like Japan’s snow monkeys excepted — tend to stick to tropical and subtropical forests, largely found around the equator.

But these forests haven’t always been confined to their present location. During the early Eocene Epoch, which started around 56 million years ago, the planet underwent a period of intense warming that allowed forests and their warm-loving residents to expand northward (SN: 11/3/15).

Scientists know about this early Arctic climate in part because of decades of paleontological work on Ellesmere Island in northern Canada. These digs revealed that the area was once dominated by swamps not unlike those found in the southeastern United States today. This ancient, warm, wet Arctic environment was home to a wide array of heat-loving animals, including giant tapirs and crocodile relatives.

An illustration of a reddish-brown, groundhog-sized early primate clinging to the side of a tree.
A groundhog-sized early primate, Ignacius dawsonae, that lived during the Eocene evolved special teeth and strong jaws to survive the pervasive winter darkness above the Arctic Circle.Kristen Miller/Biodiversity Institute/Univ. of Kansas (CC-BY 4.0)

For the new study, Beard and his colleagues examined dozens of teeth and jawbone fossils found in the area, concluding that they belong to two species, Ignacius mckennai and Ignacius dawsonae. These two species belonged to a now-extinct genus of small mammals that was widespread across North America during the Eocene. The Arctic variants probably made their way north as the planet warmed, taking advantage of the new habitat opening up near the poles.

Scientists have long debated whether this lineage can be considered true primates or whether they were simply close relatives. Regardless, it’s still “really weird and unexpected” to find primates or their relatives in the area, says Mary Silcox, a vertebrate paleontologist at the University of Toronto Scarborough.

For one thing, Ellesmere Island was already north of the Arctic Circle 52 million years ago. So while conditions may have been warmer and wetter, the swamp was plunged into continuous darkness during the winter months.

Newly arrived Ignacius would have had to adapt to these conditions. Unlike their southern kin, the Arctic Ignacius had unusually strong jaws and teeth suited to eating hard foods, the researchers found. This may have helped these early primates feed on nuts and seeds over the winter, when fruit wasn’t as readily available.

This research can shed light on how animals can adapt to live in extreme conditions. “Ellesmere Island is arguably the best deep time analog for a mild, ice-free Arctic,” says Jaelyn Eberle, a vertebrate paleontologist at the University of Colorado Boulder.

Studying how plants and animals adapted to this remarkable period in Arctic history, Beard says, could offer clues to the Arctic’s future residents.

from Science News https://ift.tt/zuDrt34
via



Source link