Yufan Song | Engineering | Best Paper Award
Dr. Yufan Song, Nanjing University of Aeronautics and Astronautics, China
Yufan Song, born in 1999 in Hebei, China, is a Ph.D. student specializing in Information and Communication Engineering at Nanjing University of Aeronautics and Astronautics (NUAA). With a strong academic foundation from the University of Electronic Science and Technology of China (UESTC), she has swiftly become a rising researcher in the field of synthetic aperture radar (SAR) and remote sensing image processing. Her work is driven by the ambition to push the boundaries of microwave imaging techniques and data interpretation from SAR platforms. Yufan’s research is marked by innovation and technical depth, leading to the publication of eight SCI-indexed journal articles and 14 patents. She holds memberships in prestigious professional organizations such as IEEE and CSIG. Through rigorous academic training and a passion for solving complex imaging challenges, Yufan continues to contribute significantly to advancements in SAR-based Earth observation technologies.
Publication Profile
š Education
Yufan Song commenced her academic journey at the University of Electronic Science and Technology of China (UESTC), Chengdu, where she earned her Bachelor’s degree from the College of Information and Communication Engineering in 2020. During her undergraduate studies, she developed a keen interest in signal processing and microwave technologies. Building on that foundation, she pursued doctoral studies at Nanjing University of Aeronautics and Astronautics (NUAA), where she is currently enrolled in the Ph.D. program in Information and Communication Engineering. Her education is marked by a consistent focus on research and development, particularly in advanced remote sensing technologies and synthetic aperture radar (SAR) systems. Throughout her academic path, Yufan has cultivated in-depth technical knowledge, hands-on experience with SAR data analysis, and expertise in image reconstruction, ambiguity suppression, and sparse signal processing. Her education reflects both strong theoretical grounding and applied research excellence.
š¼ Experience
Yufan Song’s experience is anchored in academic research with a strong focus on microwave imaging and SAR technologies. As a Ph.D. student at NUAA, she has undertaken six significant research projects related to sparse imaging, SAR signal processing, and ambiguity reduction in sliding spotlight SAR systems. Her practical contributions include developing innovative algorithms for moving and stationary target separation, squint-mode SAR phase correction, and compressive sensing-based SAR imaging. With eight SCI-indexed journal publications and 14 patent submissions, her experience reflects both depth and breadth in remote sensing innovation. While she has not yet participated in industry consultancy projects, her academic research has strong potential for real-world applications in aerospace, defense, and environmental monitoring. Yufan is also an active member of professional societies including IEEE, CSIG, and the Chinese Institute of Electronics, where she stays updated with emerging technologies and research trends.
š Honors and Awards
While formal award records are not explicitly listed, Yufan Songās research achievements reflect distinguished academic excellence deserving of recognition. Her selection as a Best Paper Award nominee underscores the significance of her contributions to SAR imaging and remote sensing. Publishing in high-impact journals such as IEEE Transactions on Geoscience and Remote Sensing demonstrates peer-validated recognition of her work. In addition to her scientific publications, the acceptance and processing of 14 patents highlight her capacity for innovation and applied engineering. Furthermore, her active membership in leading academic societiesāIEEE, CSIG, and the China Society of Image and Graphicsāspeaks to her standing in the research community. Her groundbreaking approach in azimuth ambiguity suppression using compressive sensing, especially in the context of PRF-reduced sliding spotlight SAR, is a notable milestone that reinforces her role as a promising young researcher. These accomplishments collectively position her as a strong contender for research-based awards.
š¬ Research Focus
Yufan Songās research is centered on Synthetic Aperture Radar (SAR), Sparse Microwave Imaging, and Remote Sensing Image Processing. Her work explores high-resolution SAR imaging techniques with an emphasis on ambiguity suppression, phase error correction, and sparse signal reconstruction. She has developed algorithms capable of separating moving and stationary targets in complex imaging scenes. One of her key innovations involves a joint sparse imaging model for spaceborne PRF-reduced sliding spotlight SAR, which incorporates compressive sensing to manage azimuth ambiguityāa challenge that significantly affects image clarity and accuracy. Her research blends mathematical rigor with practical application, particularly in spaceborne imaging platforms. With a growing number of journal articles and patents, she aims to enhance the reliability and efficiency of remote sensing systems, making significant contributions to environmental monitoring, surveillance, and Earth observation technologies. Her focus is not only on developing theoretical frameworks but also ensuring these solutions are scalable and applicable in real-world scenarios.
š Publications
-
š A Compressive Sensing-Based Sparse Imaging Method for PRF-Reduced Sliding Spotlight SAR
-
š Separation of Moving and Stationary Targets in SAR via Doppler Parameter Estimation
-
š Squint-Mode SAR Imaging Based on Azimuth Phase Error Correction and Sparse Reconstruction
-
š Joint Imaging Model for Azimuth Ambiguity Suppression in Compressive Sensing SAR Systems
-
š Phase Error Estimation Using Gradient Descent for Sliding Spotlight SAR
-
š Sparse Reconstruction-Based Image Enhancement for Remote Sensing Scenes
-
š Azimuth Time-Domain Compensation Method in Squint SAR Imaging
-
š An Improved Sparse Microwave Imaging Algorithm for Spaceborne SAR Applications